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Executive Summary

4

• 5G will support diverse use cases

- Enhanced mobile broadband, wide area IoT, and high-reliability services

• OFDM family is well suited for mobile broadband and beyond

- Efficient MIMO spatial multiplexing for higher spectral efficiency

- Scalable to wide bandwidth with lower complexity receivers

• CP-OFDM/OFDMA for 5G downlink

- CP-OFDM with windowing/filtering delivers higher spectral efficiency with comparable out-of-band emission 

performance and lower complexity than alternative multi-carrier waveforms under realistic implementations

- Co-exist with other waveform & multiple access options for additional use cases and deployment scenarios

• SC-FDM/SC-FDMA for scenarios requiring high energy efficiency (e.g. macro uplink)

• Resource Spread Multiple Access (RSMA) for use cases requiring asynchronous and grant-less 

access (e.g. IoT)
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OFDM-based waveform & multiple access are recommended for 5G
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eMBB for Sub-6GHz

• Licensed macro uplink

• Waveform: OFDM, SC-FDM

• Multiple access: OFDMA, SC-FDMA, RSMA

• Unlicensed and small cell uplink

• Waveform: OFDM

• Multiple access: OFDMA

Wide Area IoT

• Uplink:

- Waveform: SC-FDE

- Multiple access: RSMA

mmWave

• Uplink:

- Waveform: OFDM, SC-FDM

- Multiple access: OFDMA, SC-

FDMA

High-Reliability Services2

• Uplink

- Waveform: OFDM, SC-FDM

- Multiple access: OFDMA, SC-

FDMA, RSMA

Downlink recommendation

(for all use cases):

• Waveform: OFDM1

• Multiple access: OFDMA 

Additional waveform & multiple access options are included to support specific scenarios

1. OFDM waveform in this slide refers to OFDM with cyclic prefix and windowing.    2. with scaled frame numerology to meet tighter timeline for high-reliability services
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Waveform & multiple access 
techniques evaluation and 
recommendations
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5G design across services
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eMBB

• Lower latency scalable numerology 

• Self-Contained TDD subframe structure 

for licensed & unlicensed spectrum

• New TDD fast SRS for massive MIMO

• Integrated access/backhaul, D2D
…

Wide Area IoT

• Lower energy 

waveform

• Optimized link budget

• Decreased overheads

• Managed mesh

mmWave

• Sub6 GHz & mmWave

• Common MAC

• Access and backhaul

• mmWave beam 

tracking

High-Reliability

• Lower packet loss rate

• Lower latency 

bounded delay

• Optimized PHY/pilot/ 

HARQ

• Efficient multiplexing

Motivations of waveform & multi-access design

• Support wide range of use cases:

- eMBB: higher throughput / higher spectral efficiency 

- Wide area IoT: massive number of low-power small-

data-burst devices with limited link budget

- Higher-reliability: services with extremely lower latency 

and higher reliability requirements

• Accommodate different numerologies optimized for 

specific deployment scenarios and use cases

• Minimize signaling and control overhead to improve 

efficiency

Enhanced Mobile Broadband (eMBB) is the anchor 

technology on to which other 5G services are derived
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Key design targets for physical layer waveform
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Key design targets Additional details

Higher spectral efficiency • Ability to efficiently support MIMO

• Multipath robustness

Lower in-band and out-of-band 

emissions

• Reduce interference among users within allocated band

• Reduce interference among neighbor operators, e.g. achieve low ACLR

Enables asynchronous multiple 

access

• Support a higher number of small cell data burst devices with minimal scheduling 

overhead through asynchronous operations

• Enables lower power operation

Lower power consumption • Requires low PA backoff leading to high PA efficiency

Lower implementation complexity • Reasonable transmitter and receiver complexity

• Additional complexity must be justified by significant performance improvements
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Key design targets for multiple access technique

9

Key design targets Additional details

Higher network spectral efficiency • Maximize spectral efficiency across users and base stations

• Enable MU-MIMO

Link budget and capacity trade off • Maximize link budget and capacity taking into consideration their trade off as well 

as the target use case requirements

Lower overhead • Minimize protocol overhead to improve scalability, reduce power consumption, 

and increase capacity

• Lower control overhead
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Quick refresh on OFDM
Orthogonal Frequency Division Multiplexing
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Data
Serial to 
Parallel

IFFT
Foundation  
to OFDM 
Synthesis

Cyclic 
Prefix (CP) 
Insertion

Windowing
/Filtering

0s

0s

To RF

Simplified OFDM 

waveform synthesis for 

a transmitter

Coding & 
Modulation

OFDM-based waveforms are the foundations for LTE and Wi-Fi systems today

Windowing reduces 

out-of-band emissions

Helps maintain orthogonality 

despite multipath fading

Data transmitted via closely-spaced, narrowband subcarriers –

IFFT operation ensures subcarriers do not interfere with each other

CP

Bandwidth Time

Transmitted Waveform
after windowing

IFFT outputCP

Time
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OFDM family well suited to meet the evolving requirements
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Additional waveform & multiple access options can complement OFDM to enable more use cases

Asynchronous 

multiplexing

Can co-exist with other 

waveform/multi-access 

within the same 

framework to support 

wide area IoT

MIMO

zzz

zzz

zzz
zzz

Higher spectral 

efficiency

Efficiently support MIMO 

spatial multiplexing with 

wide bandwidths and 

larger array sizes

Lower out-of-band 

emissions

Windowing effectively 

enhances frequency 

localization

Lower complexity

Lower complexity 

receivers even when 

scaling to wide 

bandwidths with 

frequency selectivity

Lower power 

consumption

Single-carrier OFDM 

waveform for scenarios 

with higher power 

efficiency requirements
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Numerous OFDM-based waveforms considered
Different implementation options and optimizations
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Waveforms A B IFFT C D E

CP-OFDM + WOLA1 √ CP √

SC-FDM + WOLA √ √ CP √

UFMC √ ZG √

FBMC √ √

Zero-tail SC-FDM √ √ √

Data
Serial to 
Parallel

Zeroes 
at head

Zeroes 
at tail

Zero-tail 
Pad

DFT 
Precoding

OFDM 
Synthesis

(IFFT)

CP or 
Zero-guard

Windowing
(prototype 

filter)

Bandpass
Filter

0

0

To RF

Optional blocks

1 Weighted OverLap and Add (WOLA) – Windowing technique popular in 4G LTE systems today

LTE UL

LTE DL
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Summary of single-carrier waveforms
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Waveforms Pros Cons

Constant envelope

(e.g., GMSK in GSM and Bluetooth LE; 

MSK in Zigbee)

• 0dB PAPR

• Allow asynchronous multiplexing

• Good side lobe suppression (GMSK)

• Lower spectral efficiency

SC-QAM

(in EV-DO, UMTS)

• Low PAPR at low spectral efficiency

• Allow asynchronous multiplexing

• Simple waveform synthesis

• Limited flexibility in spectral assignment

• Non-trivial support for MIMO

SC-FDE • Equivalent to SC-QAM with CP

• Allow FDE processing

• Similar as SC-QAM

• ACLR similar to DFT-spread OFDM

SC-FDM1

(in LTE uplink)

• Flexible bandwidth assignment

• Allow FDE processing

• Higher PAPR and worse ACLR than SC-QAM

• Need synchronous multiplexing

Zero-tail SC-FDM2 • Flexible bandwidth assignment

• No CP, but flexible inter-symbol guard

• Better OOB suppression than SC-FDM without 

WOLA

• Need synchronous multiplexing

• Need extra control signaling 

• Lack of CP makes multiplexing with CP-OFDM less 

flexible

1. Also referred to as SC DFT-spread OFDM. 2. Also referred to as Zero-tail SC DFT-spread OFDM 
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Summary of OFDM-based multi-carrier waveforms
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Waveforms Pros Cons

CP-OFDM
(in LTE spec. but existing 

implementations typically include WOLA 

to meet performance requirements)

• Flexible frequency assignment

• Easy integration with MIMO

• High ACLR – side lobe decays slowly

• Need synchronous multiplexing

CP-OFDM with WOLA
(in existing LTE implementations)

• All pros from CP-OFDM

• Better OOB suppression then CP-OFDM

• Simple WOLA processing

UFMC • Better OOB leakage suppression than CP-

OFDM (but not better than CP-OFDM with 

WOLA)

• ISI from multipath fading (no CP)

• Higher Tx complexity than CP-OFDM

• Higher Rx complexity (2x FFT size) than CP-OFDM

FBMC • Better than CP-OFDM with WOLA (but the 

improvement is reduced with PA nonlinearity)

• High Tx/Rx complexity due to OQAM (waveform is 

synthesized per RB)

• Integration with MIMO is nontrivial

• Subject to ISI under non-flat channels

GFDM • Same leakage suppression as CP-OFDM with 

WOLA

• Complicated receiver to handle ISI/ICI

• Higher block processing latency (no pipelining)

• Multiplex with eMBB requires large guard band
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Summary of multiple access techniques
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Multiple access Pros Cons

SC-FDMA
(in LTE uplink)

• With PAPR/coverage

• Multiplexing with OFDMA

• Need synchronous multiplexing

• Link budget loss for large number of simultaneous 

users

OFDMA
(in LTE downlink)

• No intra-cell interference

• higher spectral efficiency and MIMO

• Need synchronous multiplexing

• Link budget loss for large number of simultaneous

users

Single-carrier RSMA • Allow asynchronous multiplexing

• Grantless Tx with minimal signaling overhead

• Link budget gain

• Not suitable for higher spectral efficiency

OFDM-based RSMA • Grantless Tx with minimal signaling overhead • Need synchronous multiplexing

LDS-CDMA/SCMA • Allow lower complexity iterative message passing

multiuser detection (when there are small number of 

users)

• Higher PAPR than SC RSMA

• Need synchronous multiplexing

• Lack of scalability/flexibility to users requiring different 

spreading factors

• Not exploiting full diversity

MUSA • Similar to LDS-CDMA with SIC • Higher PAPR
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Waveform comparison
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Waveforms SC-QAM SC-FDM/ 

SC-FDE

Zero-tail 

SC-FDM

CP-OFDM 

with WOLA

UFMC FBMC GFDM

Higher spectral efficiency with 

efficient MIMO integration

Lower in-band and OOB emissions

Enables asyn. multiple access

Lower power consumption

Lower implementation complexity

• CP-OFDM with WOLA offers higher spectral efficiency and low implementation complexity, and is suitable for the downlink where 

energy efficiency requirement is more relaxed

• Other waveform and multiple access options can co-exist with CP-OFDM within the same framework to support additional scenarios:

- SC-FDM with orthogonal multiple access on macro uplink for better PA efficiency

- SC-FDE with RSMA for use cases requiring grant-less asynchronous access
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Summary of recommendations
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Use cases Key requirements Recommended waveform / multiple access

eMBB Uplink • Macro cell: low PAPR as devices are power-limited • Macro cell:  SC-FDM / SC-FDMA

• Small cell/unlicensed:  higher spectral efficiency due 

to transmit power limitation

• Small cell/unlicensed:  CP-OFDM with WOLA / OFDMA

Downlink • Higher peak spectral efficiency 

• Fully leverage spatial multiplexing

• CP-OFDM with WOLA / OFDMA

Wide area IoT Uplink • Support short data bursts

• Long device battery life

• Deep coverage

• SC-FDE / RSMA

Downlink • CP-OFDM with WOLA / OFDMA1

Higher-

reliability

services

Uplink • Lower latency

• Lower packet loss rate

• Macro cell:  SC-FDM / SC-FDMA or RSMA2

• Small cell and unlicensed:  CP-OFDM with WOLA  / OFDMA2

Downlink • CP-OFDM with WOLA / OFDMA1,2

1. For IoT and high-reliability downlink, PAPR is not the most critical constraint, and synchronization among user is not a concern. Therefore it is desirable to use the same waveform and multi-access as nominal traffic

2. The numerology for subframe and HARQ timeline may need to be condensed to provide very high reliability in a shorter time span.
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Additional information on

physical layer waveforms
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Potential waveform options
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Single-carrier waveform

• Time domain symbol sequencing:

- Typically lower PAPR leading to high PA efficiency 

and extended battery life

- Equalizer is needed to achieve high spectral 

efficiency in the presence of multipath

• Example waveforms:

- Constant envelops waveform, such as:

• MSK (adopted by IEEE 802.15.4)

• GMSK (adopted by GSM and Bluetooth)

- SC-QAM (adopted by EV-DO and UMTS)

- SC-FDE (adopted by IEEE 802.11ad)

- SC-FDM (adopted by LTE uplink)

- Zero-tail SC-FDM

OFDM-based multi-carrier waveform

• Frequency domain symbol sequencing

- Support multiple orthogonal sub-carriers within a 

given carrier bandwidth

- Typically easy integration with MIMO leading to 

improved spectral efficiency

• Example waveforms:

- CP-OFDM (adopted by LTE spec)

- CP-OFDM w/ WOLA (existing LTE implementation)

- UFMC

- FBMC

- GFDM
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Constant envelope waveforms
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Key characteristics

• Pros:

- Higher transmit efficiency:

- Constant transmit carrier power: 0dB PAPR

- Allow PA to run at saturation point

- Good side lobe suppression (e.g. GMSK)

- Allow asynchronous multiplexing

- Reasonable receiver complexity

• Cons:

- Lower spectral efficiency 

• Example applications:

- MSK (adopted by Zigbee and IEEE 802.15.4)

- GMSK (adopted by GSM and Bluetooth LE)

MSK Transmitter

MSK Receiver
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Single carrier QAM
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Spreader/

Scrambler

QAM

Modulation D
e

m
u

x

Pulse
shaping

Pulse
shaping

𝜋/2

cos(2𝜋𝑓𝑐𝑡)

I

Q

De-spreader/

De-scrambler
Demod

M
u

x

Matched
filter

Matched
filter

𝜋/2

cos(2𝜋𝑓𝑐𝑡)

Transmitter

Receiver

Key characteristics

• Pros:

- Lower PAPR at low spectral efficiency

- Lower ACLR with the use of pulse shaping filter

- Allow asynchronous multiplexing

- Simple waveform synthesis

- Higher spectral efficiency then constant 

envelope waveform using a single carrier

• Cons:

- Limited flexibility in spectral assignment

- Non-trivial support for MIMO

- Equalization algorithm for improving spectral 

efficiency increases receiver complexity

• Example applications:

- UMTS, CDMA2000, 1xEVDO
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Single carrier frequency domain equalization (SC-FDE)
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Transmitter

Receiver

Key characteristics

• Equivalent to SC-QAM with CP

• Pros:

- Enable simple FDE implementation for single 

carrier waveform to Improve spectral efficiency 

under multipath fading

• Cons:

- Slight spectral efficiency degradation due to 

the added Cyclic Prefix (CP)

- Higher ACLR than SC-QAM

Add CP𝑑0, 𝑑1, ⋯ 𝑑𝑁−1

CP
removal

S/P N-FFT FDE N-IFFT P/S

𝑑0, 𝑑1, ⋯ 𝑑𝑁−1
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Single Carrier FDM
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Transmitter

Receiver

Key characteristics

• Pros:

- Support dynamic bandwidth allocation

- Flexibility in allocating different bandwidth 

to multiple users through frequency 

multiplexing (referred to as SC-FDMA)

- Mitigate multipath degradation with FDE

• Cons:

- Higher PAPR than SC-QAM

- Higher ACLR than SC-QAM

- Need synchronous multiplexing

• Example applications:

- LTE uplink

S/P M-DFT
Add

CP
N-IFFT P/S

M 0

0

𝑑0, 𝑑1, ⋯ 𝑑𝑀−1

P/SM-IDFTS/P

discard

CP

removal
FDE

M

discard

N-FFT
𝑑0, 𝑑1, ⋯ 𝑑𝑀−1
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Weighted Overlap and Add (WOLA)
Significant improvement to out-of-band and in-band asynchronous user interference suppression 
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WOLA processing at Transmitter (Tx-WOLA)

IFFT output

CP

Overlapped
extension

Overlapped
extension

Left soft edge Right soft edge

Transmitted Waveform

WOLA processing at Receiver (Rx-WOLA)

Practical implementations using time domain windowing

Received WaveformCP

FFT input

Overlap and add

Receive weighting

(along window edges)

Weighting
function A

Weighting
function B
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Improved OOB performance with WOLA
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Significant improvement to OOB leakage performance 

using time-domain windowing (WOLA)

Higher OOB leakage than SC-QPSK due to 

discontinuities between OFDM transmission blocks

PSD of SC-FDM without WOLA PSD of SC-FDM with WOLA

Assumptions: SC-FDM: 60 symbols per run, 1000 runs.  CP length is set to be roughly 10% of the OFDM symbol length. For Tx-WOLA, raised-cosine edge with rolloff α≈0.64 is used. 
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B
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SC-DFT: no clipping

SC-QPSK

SC-FDM

SC-FDM

SC-FDM
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SC-DFT: clip at6dB

SC-DFT: clip at8dB

SC-DFT: no clipping

SC-QPSK

SC-FDM

SC-FDM

SC-FDM
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Zero-Tail SC-FDM 
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Transmitter

Receiver

Key characteristics

• Pros:

- Flexible bandwidth assignment

- No CP but support variable zero tail length, based 

on channel delay spread on a per-user basis

- Improved spectral efficiency for some users – up to 

7% due to removal of CP

- Better OOB suppression than DFT-spread OFDM 

but worse than DFT-spread OFDM with WOLA

• Cons:

- Need synchronous multiplexing

- Extra signaling overhead to configure zero-tail

- Lack of CP makes multiplexing with OFDM less 

flexible due to different symbol size

S/P M-DFT N-IFFT P/S

n zeros at tail 0

0h zeros at head

𝑑0, 𝑑1, ⋯ 𝑑𝑀−1−ℎ−𝑛

M-IDFTS/P

discard

FDE

M

discard

N-FFT P/S

Discard n zeros

Discard h zeros

𝑑0, 𝑑1, ⋯ 𝑑𝑀−1−ℎ−𝑛
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CP-OFDM waveform
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Transmitter

Receiver

Key characteristics

• Pros:

- Efficient implementation using FFT/IFFT

- Flexible spectrum allocation to different users

- Straight-forward application of MIMO technology:

- Flexible signal and data multiplexing, e.g. placement 

of pilot across the frequency-time grid for channel 

estimation

- Simple FDE for multipath interference mitigation

• Cons:

- Poor frequency localization due to the 

rectangular prototype filter (without WOLA)

- Can be significantly improved using WOLA

• Example applications:

- CP-OFDM with WOLA is used in LTE downlink

P/SS/P

discard

CP

removal
FDE

M

discard

N-FFT
𝑑0, 𝑑1, ⋯ 𝑑𝑀−1

WOLA*S/P
Add

CP
N-IFFT P/S

0

0

𝑑0, 𝑑1, ⋯ 𝑑𝑀−1

* WOLA is not in LTE spec. but existing implementations typically include WOLA to meet performance requirements
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WOLA substantially improves OOB performance

28

Assumptions: 12 contiguous data tones, 60 symbols per run, 1000 runs.  CP length is set to be roughly 10% of the OFDM symbol length. For Tx-WOLA, raised-cosine edge with rolloff α≈0.078 is used. 

PSD of CP-OFDM with WOLA at the transmitter

WOLA substantially 

improves  CP-OFDM 

OOB leakage 

performance
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Universal-Filtered Multi-Carrier (UFMC)
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Transmitter

Receiver

Key characteristics

• Use band-pass Tx filter to suppress OOB leakage:

- Each Resource Block (RB) has a corresponding Tx 

filter, which is designed to only passes the assigned RB

- A guard interval of zeros is added between successive 

IFFT symbols to prevent ISI due to Tx filter delay

• Pros:

- Similar OOB performance as CP-OFDM with WOLA

- Can be used to multiplex user with different 

numerologies (similar to CP-OFDM with WOLA)

• Cons:

- More complex transmitter/receiver design

- Subject to ISI due to the lack of CP

P/S

S/P 2N-FFT

P/S

 𝑑1,1
,  𝑑1,2

,  𝑑1,3
, ⋯

 𝑑2,1
,  𝑑2,2

,  𝑑2,3
, ⋯

S/P
Tx 

filter 1N-IFFT P/S

0

0

RB1

S/P
Tx 

filter 2N-IFFT P/S

0

RB2 0

Add 
zero guard

Add 
zero guard

𝑑1,1, 𝑑1,2, 𝑑1,3 ⋯

𝑑2,1, 𝑑2,2, 𝑑2,3 ⋯
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Additional details on UFMC transmitter/receiver processing
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Transmit waveform 
for symbol 1

Transmit waveform 
for symbol 2

IFFT output
(symbol 1)

Tx
filtering

Tx filter
length

IFFT output
(symbol 2)

UFMC processing at the transmitter

Received 
waveform

Zero padding

2x size FFT input

Tx filter
lengthFFT size

UFMC processing at the receiver
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WOLA: clip at 8dB

UFMC: clip at 6dB

UFMC: clip at 8dB

UFMC: no clipping

UFMC has comparable OOB performance as CP-OFDM+WOLA

31

Note: WOLA refers to CP-OFDM with WOLA

Assumptions: 12 contiguous data tones, 60 symbols per run, 1000 runs. Chebyshev filter is used for the tx filter. FFT and RB sizes are set to be 1024 and 12 respectively. Chebyshev filter has 102 taps, which corresponds to 10% 

CP, and has 60 dB of relative side-lobe attenuation 

PSD of UFMC at the transmitter

Comparable OOB 

leakage performance 

as CP-OFDM+WOLA
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Filter bank multi-carrier (FBMC)
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FBMC/OQAM Transmitter

FBMC waveform synthesis
Key characteristics

• Improve spectral property using prototype filter with 

frequency domain over-sampling:

- Prototype filter spans multiple symbol periods, T

- Adjacent symbols are overlapped & added in time with 

offset T to maintain spectral efficiency

- Overlap-and-add leads to potential ISI and ICI:

- Use half-Nyquist prototype filter to mitigate ISI

- Use “Offset-QAM” (OQAM) modulation to remove ICI

• Pros:

- Superior side-lobe decay than other MC waveforms 

but the benefit reduces with PA non-linearity 

• Cons:

- Complicated receiver design due to OQAM

- Subject to ISI under non-flat channel

- More complex MIMO integration than OFDM

S/P 4N-IFFT P/S

0

0

P(W)4X

Over-
sampling

Prototype
filter

𝑑0,𝑘, 𝑑1,𝑘, ⋯ 𝑑𝑀−1,𝑘

FBMC waveform 

synthesis

FBMC waveform 
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FBMC prototype filter
Improve spectral property using prototype filter with frequency domain over-sampling

33

Frequency-domain response with oversampling factor K=4 
(frequency between samples: 1/4T)

Time-domain response 

(spanning multiple symbol periods T)

Increased block processing latency can remove the benefits of asynchronous transmission 
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34Assumptions: FBMC has 24 tones, 60 symbols per run, 1000 runs. For a fair comparison to other multi-carrier waveforms, the overall FBMC symbol duration is normalized to T, which is the same as the CP-OFDM symbol duration. 

PSD of FBMC at the transmitter

FBMC side-lobe 

decays faster than 

CP-OFDM+WOLA 

with no PA clipping

OOB leakage 

suppression 

performance reduces 

with PA clipping

Downlink transmissions are synchronized and additional improvement in OOB emission performance 

at the expense of added implementation complexity and less-efficient MIMO support is not preferred
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Generalized frequency division multiplexing (GFDM)
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Key characteristics

• Similar to FBMC where prototype filter is used to 

suppress OOB leakage. However, for GFDM:

- Multiple OFDM symbols are grouped into a block, with 

a CP added to the block

- Within a block, the prototype filter is “cyclic-shift” in 

time, for different OFDM symbols

• Pros:

- Better OOB leakage suppression than CP-OFDM 

(same as CP-OFDM with WOLA)

• Cons:

- Complicated receiver to handle ISI/ICI

- Prototype filter may require more complicated 

modulation/receiver, e.g. OQAM as in FBMC

- Higher block processing latency (no pipelining)

- Multiplexing with CP-OFDM requires large guard band
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GFDM has comparable OOB performance as CP-OFDM

36

PSD of GFDM at the transmitter

Comparable OOB 

leakage performance as 

legacy CP-OFDM
Time-domain windowing 

(like WOLA) significantly 

reduces OOB leakage

Assumptions: 3 tones, 9 sub-symbols, 6 symbols per run, 1000runs.  CP length is set to be roughly 10% of the OFDM symbol length. For Tx-WOLA, raised-cosine edge with rolloff α≈0.8 is used. 
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Single-carrier waveform has comparatively lower PAPR

37

OFDM-based multi-carrier waveform delivers higher spectral efficiency and is suitable for downlink where energy efficiency 

requirement is more relaxed. Single carrier waveform can be used for other scenarios requiring high energy efficiency.
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Additional information on

multiple access techniques
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Potential multiple access schemes
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BW

Freq

Time
T

FDMA+TDMA

T

BW

Freq

Time

RSMA, SCMA, MUSA

BW

Freq

T

FDMA

BW

Freq

T

TDMA

Orthogonal multiple access Non-orthogonal multiple access

Multiple access techniques: Non-orthogonal FDMA FDMA+TDMA (1RB/user)

Effective Rate (kbps) 50 50 100

EbNo** (dB) -1.52 -0.73 -0.73

Link budget (dB) 146.1 145.3 142.3

Example comparison of orthogonal and non-orthogonal multiple access techniques*

* Assumptions: 12 users, 500 bits/10ms over 1 MHz bandwidth, 2Rx, an RB = 180kHz.  **Derived using Shannon formula.
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Resource Spread Multiple Access (RSMA)

40

Single carrier RSMA

Deliver better PA efficiency and has no synchronization 

requirement

Multi-carrier RSMA

Exploit wider bandwidth to achieve lower latency for less 

power-constrained applications

Add

CP

Spreader/

Scrambler

Interleaver

(optional)
Coder

Add

CP

Spreader/

Scrambler

Interleaver

(optional)
Coder S/P IFFT P/S

Key characteristics

• Spread user signal across time and/or frequency 

resources:

- Use lower rate channel coding to spread signal across 

time/frequency to achieve lower spectral efficiency

- Users’ signals can be recovered simultaneously even 

in the presence of mutual interference

• RSMA is more robust: 

- Coding gain provides EbNo efficiency compared with 

orthogonal spreading or simple repetition

- More powerful codes can be employed than simple 

repetition combined with low rate convolution codes
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Sparse code multiple access (SCMA)

41

Key characteristics

• SCMA is based on Low Density Signature (LDS) CDMA

- Lower-density spreading

- Only partially uses the available time/frequency resources

• But unlike LDS-CDMA, SCMA uses multi-dimensional 

constellations:

- Each user has a unique codebook which maps each of M

codewords to a length N constellation

- The length N constellation is extended to length L by 

inserting L-N zeros.

• Requires iterative multiuser joint detection

LDS

spreading

QAM

modulation

FEC

encoder

X 0 0 X 0 XX

LDS spreading encoder
FEC

encoder

X 0 0 Y 0 Z

SCMA

LDS-CDMA
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Appendix
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Abbreviation Definition
ACLR Adjacent Channel Leakage Ratio

CDMA Code Division Multiple Access

CP Cyclic prefix

CP-OFDM OFDM with Cyclic Prefix

D2D Device-to-Device Communication

DFT Discrete Fourier Transform

DL Downlink

eMBB Enhanced Mobile Broadband

EVDO Evolution-Data Optimized

FBMC Filter Bank Multi-Carrier

FDE Frequency Domain Equalization

FDM Frequency Division Multiplexing

FDMA Frequency Division Multiple Access

FEC Forward Error Correction

FFT Fast Fourier Transform

GFDM Generalized Frequency Division Multiplexing

GMSK Gaussian Minimum Shift Keying

GSM Global System for Mobile Communications

HARQ Hybrid Automatic Repeat Request

IAB Integrated Access and Backhaul

IFFT Inverse Fast Fourier Transform

IoT Internet of Things

LE Low Energy

ICI Inter Carrier Interference

ISI Inter Symbol Interference

LDS-CDMA Low Density Signature CDMA

LTE Long Term Evolution

MAC Multiple Access Control Layer

MC Multi-Carrier

MIMO Multiple-Input Multiple-Output

Abbreviation Definition
mmWave Millimeter Wave

MSK Minimum Shift Keying

MUSA Multi-User Shared Access

MU-MIMO Multiuser MIMO

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

OOB Out of Band Emissions

OQAM Offset-QAM

PA Power Amplifier

PAPR Peak-to-Average Power Ratio

PHY Physical Layer

P/S Parallel-to-Serial

PSD Power Spectral Density

QAM Quadrature Amplitude Modulation

RB Radio Block

RSMA Resource Spread Multiple Access

RX Receiver

SC-DFT-Spread OFDM Single Carrier Discrete Fourier Transform Spread OFDM

SC-FDE Single Carrier Frequency Domain Equalization

SC-FDM Single Carrier Frequency Division Multiplexing

SCMA Sparse Code Multiple Access

S/P Serial-to-Parallel

SRS Sounding Reference Signal

TDD Time Division Duplexing

TDMA Time Division Multiple Access

TX Transmitter

UFMC Universal Filter Multi-Carrier

UL Uplink

UMTS Universal Mobile Telecommunications System

WOLA Weighted Overlap and Add filtering

ZT-SC-DFT-Spread OFDM Zero-Tail Single Carrier DFT Spread OFDM
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