

Copyright © 2010
QUALCOMM Incorporated
All rights reserved

This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to U.S.
and international law is strictly prohibited.
QUALCOMM is a registered trademark of QUALCOMM Incorporated in the United States and may be registered in other countries.
Other product and brand names may be trademarks or registered trademarks of their respective owners.

Improving Content Delivery Solutions

Copyright © 2010
QUALCOMM Incorporated
All rights reserved

This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to U.S.
and international law is strictly prohibited.
QUALCOMM is a registered trademark of QUALCOMM Incorporated in the United States and may be registered in other countries.
Other product and brand names may be trademarks or registered trademarks of their respective owners.

Improving Content Delivery Solutions

RaptorQ™ Technical Overview

RaptorQ™ Technical Overview

Overview of RaptorQ

Raptor is a forward error correction (FEC) technology implemented in software that
provides application-layer protection against network packet loss. RaptorQ is the most
flexible and powerful product in the Raptor Technology line, pioneered by Digital
Fountain. The RaptorQ encoder and decoder software libraries allow streaming and file
delivery services to recover data lost in transit and completely reconstruct it, without
using a backchannel. Raptor Technology has a 10-year proven track record of
successfully enabling solutions to achieve the high quality-of-service (QoS) content
providers and end users demand.

The RaptorQ encoder and decoder software libraries can be used by applications as
follows.

 A sender application generates encoded data from source data using the RaptorQ
encoder.

 The encoded data is sent over a network to receiver applications.

 Some of the encoded data may be lost before it arrives at a receiver application.

 The receiver application decodes the data using the RaptorQ decoder. As long as
enough encoded data arrives at the receiver application, error-free decoding is
achieved, independent of the pattern of loss.

The RaptorQ encoding and decoding libraries offer the following key properties:

 Exceptionally fast encoding and decoding – linear-time encoding and decoding,
enabling deployment in even the most CPU constrained environments.

 Exceptional loss recovery properties – efficiently and completely recovers the original
source data from reception of any combination of encoded data essentially equal in
size to the source data, independent of which encoded data arrives and which
encoded data is lost.

 Flexibility to operate on a wide range of source data sizes and produce as much
encoded data as necessary—like a water fountain that produces an endless supply
of water, any of which can be used to completely fill a glass, RaptorQ is a fountain
code (a “digital fountain”) that can efficiently generate a potentially unlimited amount
of encoded data from the source data, any of which is useful for the reconstruction of
the data.

RaptorQ encodes and decodes a block of source data, called a source block, which is
partitioned into equal-size pieces of data, called source symbols. The source block size is
configured by the application that incorporates the RaptorQ software library based on the
application requirements. The RaptorQ encoder generates repair symbols from the
source symbols of a source block, where the repair symbols are the same size as the
source symbols and the encoded symbols that can be sent consist of the combination of
the source symbols and the repair symbols.

Typically, each encoded symbol is sent in an individual packet together with a 32-bit
header, called the FEC Payload ID consisting of an 8-bit source block number and a
24-bit encoded symbol identifier (ESI) that allows the receiver to identify the encoded
symbol carried in the packet.

May contain U.S. and international export controlled information 2

RaptorQ™ Technical Overview

The RaptorQ software library supports from 1 to 56,403 source symbols per source
block. The number of repair symbols that can be generated is huge, i.e., many more than
is needed by almost all applications: There can be up to 224 encoded symbols per source
block.

The recovery properties of the RaptorQ decoder are exceptional. If there are K source
symbols in a source block, then the RaptorQ decoder can recover the source block with
probability greater than:

 99% from reception of K encoded symbols

 99.99% from reception of K+1 encoded symbols

 99.9999% from reception of K+2 encoded symbols

These recovery probabilities hold across the entire range of possible numbers of source
symbols, source symbol sizes, and loss probabilities of sent encoded symbols, e.g., 10%
loss of sent encoded symbols, 30% loss of encoded symbols, 50% loss of encoded
symbols, 70% loss of encoded symbols, 90% loss of encoded symbols.

Algorithmic Ingredients of RaptorQ Encoding and Decoding

The RaptorQ encoding and decoding algorithms are fully specified in IETF RMT RaptorQ.
Some of the main algorithmic ingredients of RaptorQ are a well-designed combination of
the following.

LT code

The LT code provides a very simple XOR-based encoding and decoding method that is
extremely fast and effective. Each encoded symbol is computed as the exclusive-or
(XOR) of a neighbor set of d source symbols. The value of d for an encoded symbol is
chosen from a probability distribution called the degree distribution. The d neighbors of
an encoded symbol are uniformly and randomly chosen from among the source symbols.
This encoding process provides the fountain-like properties described above: because
encoded symbols are generated independently of one another, as many encoded
symbols as desired can be generated efficiently.

May contain U.S. and international export controlled information 3

RaptorQ™ Technical Overview

Figure 1 illustrates a toy example of LT encoding: x1,x2,x3,x4 ,x5,x6 depict source
symbols and depict encoded symbols generated from the source
symbols, where for example is of degree 3 and has neighbors

y1,y2,y3,y4 ,y5,y6,y7
y1 x3,x5,x6 , whereas

is of degree 1 and has neighbor
y4

x3 .

Figure 1

Decoding consists of repeating the following until all source symbols have been
recovered, starting with received encoded symbols: if there is an encoded symbol with
exactly one neighboring unrecovered source symbol then set the source symbol value to
that of the encoded symbol (thus recovering the source symbol) and XOR the value of
the source symbol into all the other encoded symbols that have that source symbol as a
neighbor. This process is sometimes called belief-propagation decoding, and is a
restricted version of Gaussian elimination decoding.

LT decoding applied to Figure 1 works as follows:

x3 = y4 ; XOR the value of x3 into ; y1,y2,y6

x6 = y6; XOR the value of x6 into ; y1,y5,y7

x5 = y1; XOR the value of x5 into ; y7

x1 = y5 ; XOR the value of x1 into ; y2, y3

x2 = y2 ; XOR the value of x2 into ; y7
x4 = y3 .

In this example there is an unneeded encoded symbol, i.e., could also have been
used to recover

y7
x4 in the last step.

Although belief-propagation decoding is more efficient than general Gaussian elimination
decoding, belief-propagation decoding can fail when Gaussian elimination decoding
would succeed, and this is why the degree distribution design is crucial. The degree
distribution has the following property: the probability of choosing d = 1 is small; for
values of d between 2 and K, the probability of choosing an encoded symbol with

d neighbors is approximately equal to
1

d × (d −1)
. Thus, the average number of

neighbors of an encoded symbol is proportional to
d

d⋅ (d −1)d =2

K

∑ =
1

d −1d =2

K

∑ ≈ ln(K) .

May contain U.S. and international export controlled information 4

RaptorQ™ Technical Overview

This degree distribution ensures that belief-propagation decoding recovers a source
block of K source symbols from slightly more than K received encoded symbols with high
probability.

For both encoding and decoding, there is at most one symbol-XOR operation per
encoded symbol neighbor, and thus the average number of symbol-XOR operations per
generated encoded symbol is proportional to ln(K), and the average number of symbol-
XOR operations to recover the K source symbols from slightly more than K encoded
symbols is proportional to K·ln(K).

Pre-coding

Although an LT code is fast, it is not linear time. The reason for this is that the recovery of
the last few source symbols using LT decoding uses very high-degree encoded symbols.
The idea behind pre-coding is to relax the recovery problem: employ a light-weight pre-
coding to the source symbols to generate a small fraction of additional redundant
symbols. The combination of the source symbols and the redundant symbols, called the
intermediate symbols, has the property that all of the intermediate symbols can be
efficiently recovered once most of the intermediate symbols are known. This recovery
process uses the built-in redundancy between the source symbols and redundant
symbols defined by the pre-coding.

A toy example of pre-coding is illustrated in Figure 2: x1,x2,x3,x4 ,x5,x6 depict source
symbols, depict pre-coding symbols added to the source symbols to form the
intermediate symbols, depict constraint symbols that indicate the relationships
between the source and pre-coding symbols, i.e., they constrain the XOR sum of their
neighbors to be zero, and depict encoded symbols generated
from the intermediate source symbols. The top-right portion of

z1,z2
0,0

y1,y2,y3,y4 ,y5,y6,y7

Figure 2 shows the
relationship between the intermediate symbols and the encoded symbols, and as can be
seen source symbol x2 is not a neighbor of any encoded symbol and cannot be directly
recovered by LT decoding alone. In the bottom-right portion of Figure 2, the constraint
symbols are also shown, and the source symbol x2 is a neighbor of a constraint symbol
and can be potentially recovered.

Figure 2

May contain U.S. and international export controlled information 5

RaptorQ™ Technical Overview

A two-stage pre-coding algorithm is used for RaptorQ. The first pre-coding stage uses an
LDPC code (low-density parity check code) to generate redundant symbols from the
source symbols of the source block. The LDPC code generates most of the redundant
symbols of the overall pre-coding, and the encoding and decoding times are linear in the
source block size. The second pre-coding stage uses an HDPC code (high-density parity
check code) to generate a small number of additional redundant symbols, and the HDPC
code is designed to enable encoding and decoding times that are linear in the source
block size.

LT encoding can be applied to the intermediate symbols to generate encoded symbols,
and then LT decoding can be applied to encoded symbols that have been received to
recover the intermediate symbols. The advantage is that instead of having to recover all
of the intermediate symbols with LT decoding, only a large fraction of the intermediate
symbols need to be recovered, and then the built-in redundancy amongst the
intermediate symbols can be used to recover the remaining intermediate symbols.
Because of this, very high-degree encoded symbols no longer need to be used in the
degree distribution, and the average degree of the degree distribution used for LT
encoding can be reduced from a number proportional to the logarithm of K to a constant.

Because of this property, the overall time to generate a block of encoded symbols (that is
the combination of the source symbols and generated repair symbols) is linear in the size
of the block; this is because the encoding time to generate the intermediate symbols is
linear in the source block size, and because the average time for generating each repair
symbol is linear in the symbol size.

Similarly, the overall time to recover a source block is linear in the size of the source
block; this is because the decoding time to recover most of the intermediate symbols
from the received encoded symbols using LT decoding is linear in the source block size,
and because the time to decode the remaining intermediate symbols from the recovered
intermediate symbols using LDPC and HDPC decoding is linear in the source block size.

Inactivation decoding

Inactivation decoding is an intertwined combination of belief-propagation decoding and
Gaussian elimination decoding, and provides the low complexity of belief-propagation
with the decoding guarantee of Gaussian elimination.

In a first phase the inactivation decoding process seeks out the intermediate symbols that
could be solved using belief-propagation (but doesn’t solve them, because the value may
depend on those of other intermediate symbols that the belief propagation has ignored).
Whenever belief-propagation gets stuck, an intermediate symbol is put aside
(inactivated), which thereafter belief propagation will ignore so that belief-propagation can
continue. In a second phase, Gaussian elimination is used on a typically dense set of
equations to solve for the inactivated intermediate symbols. In a third phase, belief-
propagation is used in combination with the values of the inactivated intermediate
symbols to fully recover all the intermediate symbols.

A toy example of inactivation decoding is illustrated in the series of figures: Figure 3,
Figure 4, Figure 5, and Figure 6. Figure 3 shows an example of a system of equations to
be solved: x1,x2,x3,x4 ,x5,x6,x7

y4 ,y5,y6,y7

 depicts the unknown intermediate symbols,
 depicts the combination of known encoded and constraint

symbols.
y1,y2,y3,

Figure 4 shows the same system of equations in matrix form. In phase 1, belief-

May contain U.S. and international export controlled information 6

RaptorQ™ Technical Overview

propagation is applied to intermediate symbols in the order x3,x6,x5,x2,x1, and during
the process x7 and x4 are inactivated, resulting in the system of equations shown in
Figure 5. Figure 6 shows the system of equations used to solve for x7 and x4 in phase
2. Phase 3 is similar to phase 1, except that the solved values of x7 and x4 are
substituted into the equations instead of inactivated.

Figure 3

Figure 4

May contain U.S. and international export controlled information 7

RaptorQ™ Technical Overview

Figure 5

Figure 6

Inactivation decoding is guaranteed to recover the source block if Gaussian elimination
would recover the source block, and the advantage is that inactivation decoding is much
faster than Gaussian elimination. The first and third phases of inactivation decoding use
belief-propagation decoding, and thus their running times are linear in the source block
size. The second phase involves inverting a dense M × M matrix, and then solving for
the inactivated intermediate symbols using the inverse, where M is the number of
inactivated intermediate symbols. The degree distribution is designed so that M is at

most proportional to K , while at the same time maximizing the probability that
decoding is possible. The second phase matrix inversion incurs a number of bit
operations proportional to M 3, but this is dwarfed by the number of symbol operations to
solve for the inactivated intermediate symbols, which is proportional to M 2 =K . Thus,
the overall running time of inactivation decoding is linear in the source block size.

May contain U.S. and international export controlled information 8

RaptorQ™ Technical Overview

Larger finite fields

For all the constructions described above, all of the symbol operations are XOR
operations, i.e., operations over the Galois field GF(2). There is a fundamental limitation
on the recovery properties of any such code: the best that any such code can achieve is
recovery from reception of K + h encoded symbols with probability approximately equal to

1−
1

2h+1 . A clever combination of the constructions above essentially achieves this

bound, but in many practical situations a better recovery guarantee is desirable.

The way to overcome this limitation is to use operations over larger finite fields, where for
example a code using symbol operations over GF(256) instead of over GF(2) has the
potential of achieving recovery from reception of K + h encoded symbols with probability

approximately 1−
1

256h+1 . Possible recovery properties are shown in Figure 7, for

different possible finite fields GF(q). Each different q-value line shows the decode failure
probability that could possibly be achieved using GF(q) as a function of the overhead h.

Figure 7

The disadvantage of symbol operations over larger finite fields is that they are much
more computationally expensive than simple XOR operations. The key then is to use
larger finite fields, but only a little bit, i.e., most of the symbol operations should be XOR
operations, and only a tiny minority should be symbol operations over a larger finite field.
Using larger finite fields in this way provides the low-complexity of XOR-based symbol
operations with the decoding guarantee of larger finite fields.

May contain U.S. and international export controlled information 9

RaptorQ™ Technical Overview

The HDPC symbols are computed using symbols in GF(256) for RaptorQ, and the
remainder of the symbol operations use GF(2), i.e., simple XOR operations. The GF(256)
parts of the matrix are kept isolated during encoding and decoding, so that the vast
majority of the symbol operations are over GF(2), and only a small minority are over
GF(256).

Permanent inactivation

Permanent inactivation is an interesting extension of the LT code and of inactivation
decoding that dramatically improves recovery properties while still maintaining linear time
encoding and decoding.

Permanent inactivation for RaptorQ works as follows. Approximately K of the
intermediate symbols are declared to be permanently inactive, and these are called the
PI symbols, and the remaining majority of the intermediate symbols are called the LT
symbols. The PI symbols and LT symbols are treated differently in the encoding and
decoding algorithms.

In the encoding algorithm, an encoded symbol is computed as the XOR of two temporary
symbols, where LT encoding is applied to the LT symbols to generate one temporary
symbol, and where PI encoding is applied to the PI symbols to generate the other
temporary symbol. The PI encoding process is a simple version of the LT encoding
process, where two or three of the PI symbols are chosen randomly and XORed
together.

A toy example of permanent inactivation encoding is illustrated in Figure 8: the
intermediate symbols are partitioned into the LT symbols x1,x2,x3,x4 ,x5,x6,x7,x8,x9

z
Ω
Π z

and the PI symbols . For each encoded symbol , a set of neighbors
from the LT symbols is chosen according to a degree distribution , a set of neighbors
from the PI symbols is chosen according to a degree distribution , and is the XOR of
all of these neighbors.

y1,y2,y3,y4 ,y5

Figure 8

May contain U.S. and international export controlled information 10

RaptorQ™ Technical Overview

In the decoding algorithm, the PI symbols are inactivated at the start, and then
inactivation decoding is applied as described previously, but operating only on the LT
symbols in the first and third phases, and the PI symbols and any other intermediate
symbols inactivated in the first phase are recovered in the second phase. When K
encoded symbols are used to decode the intermediate symbols, because there are
approximately K more encoded symbols than the number of LT symbols, the
additional number of inactivations is minimized, and the probability that the encoded
symbols successfully recover the LT symbols is very high.

Systematic construction

For many practical reasons, systematic codes are preferable, i.e., codes where the
source symbols are amongst the encoded symbols and the recovery properties of the
code do not depend on which fraction of the received symbols corresponds to source
symbols and which fraction corresponds to repair symbols. All of the components of the
RaptorQ code described up to this point have been non-systematic, i.e., the original
source symbols are not among the encoded symbols. It is not very difficult to show that
with any of these constructions, the naïve idea of simply adding the source symbols to
the encoded symbols and sending the source symbols does not have the desired
recovery properties. In particular, reception of some of the source symbols does not
always help in combination with reception of some of the other encoded symbols to
recover the remaining source symbols, and many more than K received symbols may be
needed to recover the remaining source symbols.

The systematic construction provides a simple but counter-intuitive way to use a non-
systematic code R to construct a systematic code S: Suppose encoder R, based on a
source block with K source symbols, produces an intermediate block Z = z1,z2,...,zn ,
and from Z generates a sequence of encoded symbols ϕ1,ϕ2,...,ϕK ,ϕK +1,ϕK +2,....
Let x1,x2,...,xK be the values of the source symbols for S. Encoder S consists of:

1. Setting ϕ1 = x1, ϕ2 = x2,…,ϕK = xK

2. Using decoder R to recover Z from ϕ1,ϕ2,...,ϕK

3. Using encoder R to produce the repair symbols ϕK +1,ϕK +2,... from Z

Then, the encoded symbols for S are the source symbols x1,x2,...,xK and the repair
symbols ϕK +1,ϕK +2,... .

In step 2, Z is constructed so that the first K encoded symbols generated by encoder R
from Z are the source symbols x1,x2,...,xK for S, and there is no difference between
how encoder R generates the first K encoded symbols and subsequent encoded symbols
from Z . From a recovery perspective, there is no differentiation between source symbols
and repair symbols: as they are all just encoded symbols generated by encoder R.

The decoding algorithm for the systematic code is symmetric to the encoding algorithm.
From received encoded symbols (which can be a mixture of the source symbols and the
repair symbols generated by encoder S), decoder R is used to generate the intermediate
symbols Z , and then encoder R generates from Z those encoded symbols among the
first K that have not been received.

May contain U.S. and international export controlled information 11

RaptorQ™ Technical Overview

May contain U.S. and international export controlled information 12

A toy example of the systematic code construction is illustrated in Figure 9:
Z = z1,z2 depict the intermediate symbols of code R, s1,s2 depict
constraint symbols that indicate the relationships between the intermed te sym

,z3,z4 ,z5,z6,z7,z8

code R,
ia bols of

x1,x2,x3,x4 ,x5,x6 depict source symbols of code S placed in the positions of
the first six encoded symbols of code R. Decoder R to recover is used Z from
x1,x2,x3,x4 ,x5,x6 using the sequence of operations depicted in the t Figure 9.

enerate repair symbols of code S
op-left of
 from The encoder R is used to g y1,y2,y3 Z using the

picted in the bottom-left of . sequence of operations de Figure 9

Figure 9

Comp

t
C technology is used today in a variety of

consumer, military, and enterprise devices and applications, supporting both wired and
unications networks.

More

For more information, please visit www.qualcomm.com/raptor

any Background

Qualcomm develops and licenses advanced FEC technology to enhance the quality of
content delivery data networks. Qualcomm’s patented RaptorQ improves streaming
media quality, ensures timely delivery of data, and enables the creation and developmen
of new communications services. DF Raptor FE

wireless telecomm

Information

 or contact raptor-
info@qualcomm.com.

