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Overview of RaptorQ 

Raptor is a forward error correction (FEC) technology implemented in software that 
provides application-layer protection against network packet loss. RaptorQ is the most 
flexible and powerful product in the Raptor Technology line, pioneered by Digital 
Fountain. The RaptorQ encoder and decoder software libraries allow streaming and file 
delivery services to recover data lost in transit and completely reconstruct it, without 
using a backchannel. Raptor Technology has a 10-year proven track record of 
successfully enabling solutions to achieve the high quality-of-service (QoS) content 
providers and end users demand.  

The RaptorQ encoder and decoder software libraries can be used by applications as 
follows. 

 A sender application generates encoded data from source data using the RaptorQ 
encoder. 

 The encoded data is sent over a network to receiver applications.  

 Some of the encoded data may be lost before it arrives at a receiver application. 

 The receiver application decodes the data using the RaptorQ decoder. As long as 
enough encoded data arrives at the receiver application, error-free decoding is 
achieved, independent of the pattern of loss. 

The RaptorQ encoding and decoding libraries offer the following key properties: 

 Exceptionally fast encoding and decoding – linear-time encoding and decoding, 
enabling deployment in even the most CPU constrained environments.  

 Exceptional loss recovery properties – efficiently and completely recovers the original 
source data from reception of any combination of encoded data essentially equal in 
size to the source data, independent of which encoded data arrives and which 
encoded data is lost.  

 Flexibility to operate on a wide range of source data sizes and produce as much 
encoded data as necessary—like a water fountain that produces an endless supply 
of water, any of which can be used to completely fill a glass, RaptorQ is a fountain 
code (a “digital fountain”) that can efficiently generate a potentially unlimited amount 
of encoded data from the source data, any of which is useful for the reconstruction of 
the data. 

RaptorQ encodes and decodes a block of source data, called a source block, which is 
partitioned into equal-size pieces of data, called source symbols. The source block size is 
configured by the application that incorporates the RaptorQ software library based on the 
application requirements. The RaptorQ encoder generates repair symbols from the 
source symbols of a source block, where the repair symbols are the same size as the 
source symbols and the encoded symbols that can be sent consist of the combination of 
the source symbols and the repair symbols.  

Typically, each encoded symbol is sent in an individual packet together with a 32-bit 
header, called the FEC Payload ID consisting of an 8-bit source block number and a 
24-bit encoded symbol identifier (ESI) that allows the receiver to identify the encoded 
symbol carried in the packet. 
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The RaptorQ software library supports from 1 to 56,403 source symbols per source 
block. The number of repair symbols that can be generated is huge, i.e., many more than 
is needed by almost all applications: There can be up to 224 encoded symbols per source 
block. 

The recovery properties of the RaptorQ decoder are exceptional. If there are K source 
symbols in a source block, then the RaptorQ decoder can recover the source block with 
probability greater than: 

 99% from reception of K encoded symbols 

 99.99% from reception of K+1 encoded symbols 

 99.9999% from reception of K+2 encoded symbols 

These recovery probabilities hold across the entire range of possible numbers of source 
symbols, source symbol sizes, and loss probabilities of sent encoded symbols, e.g., 10% 
loss of sent encoded symbols, 30% loss of encoded symbols, 50% loss of encoded 
symbols, 70% loss of encoded symbols, 90% loss of encoded symbols.  

Algorithmic Ingredients of RaptorQ Encoding and Decoding 

The RaptorQ encoding and decoding algorithms are fully specified in IETF RMT RaptorQ. 
Some of the main algorithmic ingredients of RaptorQ are a well-designed combination of 
the following. 

LT code 

The LT code provides a very simple XOR-based encoding and decoding method that is 
extremely fast and effective. Each encoded symbol is computed as the exclusive-or 
(XOR) of a neighbor set of d source symbols. The value of d for an encoded symbol is 
chosen from a probability distribution called the degree distribution. The d neighbors of 
an encoded symbol are uniformly and randomly chosen from among the source symbols. 
This encoding process provides the fountain-like properties described above: because 
encoded symbols are generated independently of one another, as many encoded 
symbols as desired can be generated efficiently. 
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Figure 1 illustrates a toy example of LT encoding: x1,x2,x3,x4 ,x5,x6  depict source 
symbols and  depict encoded symbols generated from the source 
symbols, where for example  is of degree 3 and has neighbors 

y1,y2,y3,y4 ,y5,y6,y7
y1 x3,x5,x6 , whereas  

is of degree 1 and has neighbor 
y4

x3 .  

 

Figure 1 

Decoding consists of repeating the following until all source symbols have been 
recovered, starting with received encoded symbols: if there is an encoded symbol with 
exactly one neighboring unrecovered source symbol then set the source symbol value to 
that of the encoded symbol (thus recovering the source symbol) and XOR the value of 
the source symbol into all the other encoded symbols that have that source symbol as a 
neighbor. This process is sometimes called belief-propagation decoding, and is a 
restricted version of Gaussian elimination decoding.  

LT decoding applied to Figure 1 works as follows:  

x3 = y4 ; XOR the value of x3  into ;  y1,y2,y6

x6 = y6; XOR the value of x6  into ;  y1,y5,y7

x5 = y1; XOR the value of x5  into ;  y7

x1 = y5  ; XOR the value of x1 into ;  y2, y3

x2 = y2 ; XOR the value of x2  into ;  y7
x4 = y3 .  

In this example there is an unneeded encoded symbol, i.e.,  could also have been 
used to recover 

y7
x4  in the last step. 

Although belief-propagation decoding is more efficient than general Gaussian elimination 
decoding, belief-propagation decoding can fail when Gaussian elimination decoding 
would succeed, and this is why the degree distribution design is crucial. The degree 
distribution has the following property: the probability of choosing d = 1 is small; for 
values of d between 2 and K, the probability of choosing an encoded symbol with 

d neighbors is approximately equal to 
1

d × (d −1)
. Thus, the average number of 

neighbors of an encoded symbol is proportional to 
d

d⋅ (d −1)d =2

K

∑ =
1

d −1d =2

K

∑ ≈ ln(K) . 
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This degree distribution ensures that belief-propagation decoding recovers a source 
block of K source symbols from slightly more than K received encoded symbols with high 
probability.  

For both encoding and decoding, there is at most one symbol-XOR operation per 
encoded symbol neighbor, and thus the average number of symbol-XOR operations per 
generated encoded symbol is proportional to ln(K), and the average number of symbol-
XOR operations to recover the K source symbols from slightly more than K encoded 
symbols is proportional to K·ln(K). 

Pre-coding 

Although an LT code is fast, it is not linear time. The reason for this is that the recovery of 
the last few source symbols using LT decoding uses very high-degree encoded symbols. 
The idea behind pre-coding is to relax the recovery problem: employ a light-weight pre-
coding to the source symbols to generate a small fraction of additional redundant 
symbols. The combination of the source symbols and the redundant symbols, called the 
intermediate symbols, has the property that all of the intermediate symbols can be 
efficiently recovered once most of the intermediate symbols are known. This recovery 
process uses the built-in redundancy between the source symbols and redundant 
symbols defined by the pre-coding. 

A toy example of pre-coding is illustrated in Figure 2: x1,x2,x3,x4 ,x5,x6  depict source 
symbols,  depict pre-coding symbols added to the source symbols to form the 
intermediate symbols,  depict constraint symbols that indicate the relationships 
between the source and pre-coding symbols, i.e., they constrain the XOR sum of their 
neighbors to be zero, and  depict encoded symbols generated 
from the intermediate source symbols. The top-right portion of 

z1,z2
0,0

y1,y2,y3,y4 ,y5,y6,y7

Figure 2 shows the 
relationship between the intermediate symbols and the encoded symbols, and as can be 
seen source symbol x2  is not a neighbor of any encoded symbol and cannot be directly 
recovered by LT decoding alone. In the bottom-right portion of Figure 2, the constraint 
symbols are also shown, and the source symbol x2  is a neighbor of a constraint symbol 
and can be potentially recovered.  

 

Figure 2 
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A two-stage pre-coding algorithm is used for RaptorQ. The first pre-coding stage uses an 
LDPC code (low-density parity check code) to generate redundant symbols from the 
source symbols of the source block. The LDPC code generates most of the redundant 
symbols of the overall pre-coding, and the encoding and decoding times are linear in the 
source block size. The second pre-coding stage uses an HDPC code (high-density parity 
check code) to generate a small number of additional redundant symbols, and the HDPC 
code is designed to enable encoding and decoding times that are linear in the source 
block size. 

LT encoding can be applied to the intermediate symbols to generate encoded symbols, 
and then LT decoding can be applied to encoded symbols that have been received to 
recover the intermediate symbols. The advantage is that instead of having to recover all 
of the intermediate symbols with LT decoding, only a large fraction of the intermediate 
symbols need to be recovered, and then the built-in redundancy amongst the 
intermediate symbols can be used to recover the remaining intermediate symbols. 
Because of this, very high-degree encoded symbols no longer need to be used in the 
degree distribution, and the average degree of the degree distribution used for LT 
encoding can be reduced from a number proportional to the logarithm of K to a constant.  

Because of this property, the overall time to generate a block of encoded symbols (that is 
the combination of the source symbols and generated repair symbols) is linear in the size 
of the block; this is because the encoding time to generate the intermediate symbols is 
linear in the source block size, and because the average time for generating each repair 
symbol is linear in the symbol size. 

Similarly, the overall time to recover a source block is linear in the size of the source 
block; this is because the decoding time to recover most of the intermediate symbols 
from the received encoded symbols using LT decoding is linear in the source block size, 
and because the time to decode the remaining intermediate symbols from the recovered 
intermediate symbols using LDPC and HDPC decoding is linear in the source block size. 

Inactivation decoding 

Inactivation decoding is an intertwined combination of belief-propagation decoding and 
Gaussian elimination decoding, and provides the low complexity of belief-propagation 
with the decoding guarantee of Gaussian elimination. 

In a first phase the inactivation decoding process seeks out the intermediate symbols that 
could be solved using belief-propagation (but doesn’t solve them, because the value may 
depend on those of other intermediate symbols that the belief propagation has ignored). 
Whenever belief-propagation gets stuck, an intermediate symbol is put aside 
(inactivated), which thereafter belief propagation will ignore so that belief-propagation can 
continue. In a second phase, Gaussian elimination is used on a typically dense set of 
equations to solve for the inactivated intermediate symbols. In a third phase, belief-
propagation is used in combination with the values of the inactivated intermediate 
symbols to fully recover all the intermediate symbols. 

A toy example of inactivation decoding is illustrated in the series of figures: Figure 3, 
Figure 4, Figure 5, and Figure 6. Figure 3 shows an example of a system of equations to 
be solved: x1,x2,x3,x4 ,x5,x6,x7

y4 ,y5,y6,y7

 depicts the unknown intermediate symbols, 
 depicts the combination of known encoded and constraint 

symbols. 
y1,y2,y3,

Figure 4 shows the same system of equations in matrix form. In phase 1, belief-
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propagation is applied to intermediate symbols in the order x3,x6,x5,x2,x1, and during 
the process x7  and x4  are inactivated, resulting in the system of equations shown in 
Figure 5. Figure 6 shows the system of equations used to solve for x7  and x4  in phase 
2. Phase 3 is similar to phase 1, except that the solved values of x7  and x4  are 
substituted into the equations instead of inactivated. 

 

Figure 3 

 

Figure 4 
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Figure 5 

 

Figure 6 

Inactivation decoding is guaranteed to recover the source block if Gaussian elimination 
would recover the source block, and the advantage is that inactivation decoding is much 
faster than Gaussian elimination. The first and third phases of inactivation decoding use 
belief-propagation decoding, and thus their running times are linear in the source block 
size. The second phase involves inverting a dense M × M  matrix, and then solving for 
the inactivated intermediate symbols using the inverse, where M  is the number of 
inactivated intermediate symbols. The degree distribution is designed so that M  is at 

most proportional to K , while at the same time maximizing the probability that 
decoding is possible. The second phase matrix inversion incurs a number of bit 
operations proportional to M 3, but this is dwarfed by the number of symbol operations to 
solve for the inactivated intermediate symbols, which is proportional to M 2 =K . Thus, 
the overall running time of inactivation decoding is linear in the source block size.  
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Larger finite fields 

For all the constructions described above, all of the symbol operations are XOR 
operations, i.e., operations over the Galois field GF(2). There is a fundamental limitation 
on the recovery properties of any such code: the best that any such code can achieve is 
recovery from reception of K + h encoded symbols with probability approximately equal to 

1−
1

2h+1 . A clever combination of the constructions above essentially achieves this 

bound, but in many practical situations a better recovery guarantee is desirable.  

The way to overcome this limitation is to use operations over larger finite fields, where for 
example a code using symbol operations over GF(256) instead of over GF(2) has the 
potential of achieving recovery from reception of K + h encoded symbols with probability 

approximately 1−
1

256h+1 . Possible recovery properties are shown in Figure 7, for 

different possible finite fields GF(q). Each different q-value line shows the decode failure 
probability that could possibly be achieved using GF(q) as a function of the overhead h. 

 

Figure 7 

The disadvantage of symbol operations over larger finite fields is that they are much 
more computationally expensive than simple XOR operations. The key then is to use 
larger finite fields, but only a little bit, i.e., most of the symbol operations should be XOR 
operations, and only a tiny minority should be symbol operations over a larger finite field. 
Using larger finite fields in this way provides the low-complexity of XOR-based symbol 
operations with the decoding guarantee of larger finite fields. 
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The HDPC symbols are computed using symbols in GF(256) for RaptorQ, and the 
remainder of the symbol operations use GF(2), i.e., simple XOR operations. The GF(256) 
parts of the matrix are kept isolated during encoding and decoding, so that the vast 
majority of the symbol operations are over GF(2), and only a small minority are over 
GF(256).  

Permanent inactivation 

Permanent inactivation is an interesting extension of the LT code and of inactivation 
decoding that dramatically improves recovery properties while still maintaining linear time 
encoding and decoding. 

Permanent inactivation for RaptorQ works as follows. Approximately K  of the 
intermediate symbols are declared to be permanently inactive, and these are called the 
PI symbols, and the remaining majority of the intermediate symbols are called the LT 
symbols. The PI symbols and LT symbols are treated differently in the encoding and 
decoding algorithms.  

In the encoding algorithm, an encoded symbol is computed as the XOR of two temporary 
symbols, where LT encoding is applied to the LT symbols to generate one temporary 
symbol, and where PI encoding is applied to the PI symbols to generate the other 
temporary symbol. The PI encoding process is a simple version of the LT encoding 
process, where two or three of the PI symbols are chosen randomly and XORed 
together. 

A toy example of permanent inactivation encoding is illustrated in Figure 8: the 
intermediate symbols are partitioned into the LT symbols x1,x2,x3,x4 ,x5,x6,x7,x8,x9

z
Ω
Π z

 
and the PI symbols . For each encoded symbol , a set of neighbors 
from the LT symbols is chosen according to a degree distribution , a set of neighbors 
from the PI symbols is chosen according to a degree distribution , and  is the XOR of 
all of these neighbors. 

y1,y2,y3,y4 ,y5

 

Figure 8 
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In the decoding algorithm, the PI symbols are inactivated at the start, and then 
inactivation decoding is applied as described previously, but operating only on the LT 
symbols in the first and third phases, and the PI symbols and any other intermediate 
symbols inactivated in the first phase are recovered in the second phase. When K 
encoded symbols are used to decode the intermediate symbols, because there are 
approximately K  more encoded symbols than the number of LT symbols, the 
additional number of inactivations is minimized, and the probability that the encoded 
symbols successfully recover the LT symbols is very high. 

Systematic construction 

For many practical reasons, systematic codes are preferable, i.e., codes where the 
source symbols are amongst the encoded symbols and the recovery properties of the 
code do not depend on which fraction of the received symbols corresponds to source 
symbols and which fraction corresponds to repair symbols. All of the components of the 
RaptorQ code described up to this point have been non-systematic, i.e., the original 
source symbols are not among the encoded symbols. It is not very difficult to show that 
with any of these constructions, the naïve idea of simply adding the source symbols to 
the encoded symbols and sending the source symbols does not have the desired 
recovery properties. In particular, reception of some of the source symbols does not 
always help in combination with reception of some of the other encoded symbols to 
recover the remaining source symbols, and many more than K received symbols may be 
needed to recover the remaining source symbols. 

The systematic construction provides a simple but counter-intuitive way to use a non-
systematic code R to construct a systematic code S: Suppose encoder R, based on a 
source block with K source symbols, produces an intermediate block Z = z1,z2,...,zn , 
and from Z  generates a sequence of encoded symbols ϕ1,ϕ2,...,ϕK ,ϕK +1,ϕK +2,.... 
Let x1,x2,...,xK  be the values of the source symbols for S. Encoder S consists of:  

1. Setting ϕ1 = x1, ϕ2 = x2,…,ϕK = xK  

2. Using decoder R to recover Z  from ϕ1,ϕ2,...,ϕK  

3. Using encoder R to produce the repair symbols ϕK +1,ϕK +2,... from Z  

Then, the encoded symbols for S are the source symbols x1,x2,...,xK  and the repair 
symbols ϕK +1,ϕK +2,... . 

In step 2, Z  is constructed so that the first K encoded symbols generated by encoder R 
from Z  are the source symbols x1,x2,...,xK  for S, and there is no difference between 
how encoder R generates the first K encoded symbols and subsequent encoded symbols 
from Z . From a recovery perspective, there is no differentiation between source symbols 
and repair symbols: as they are all just encoded symbols generated by encoder R. 

The decoding algorithm for the systematic code is symmetric to the encoding algorithm. 
From received encoded symbols (which can be a mixture of the source symbols and the 
repair symbols generated by encoder S), decoder R is used to generate the intermediate 
symbols Z , and then encoder R generates from Z  those encoded symbols among the 
first K that have not been received. 
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A toy example of the systematic code construction is illustrated in Figure 9: 
Z = z1,z2  depict the intermediate symbols of code R, s1,s2  depict 
constraint symbols that indicate the relationships between the intermed te sym

,z3,z4 ,z5,z6,z7,z8

code R, 
ia bols of 

x1,x2,x3,x4 ,x5,x6  depict source symbols of code S placed in the positions of 
the first six encoded symbols of code R. Decoder R  to recover  is used Z  from 
x1,x2,x3,x4 ,x5,x6  using the sequence of operations depicted in the t Figure 9. 

enerate repair symbols  of code S
op-left of 
 from The encoder R is used to g y1,y2,y3 Z  using the 

picted in the bottom-left of . sequence of operations de Figure 9

 

Figure 9 
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consumer, military, and enterprise devices and applications, supporting both wired and 
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